分类模型和回归模型本质一样,分类模型是将回归模型的输出离散化。
举几个例子:
1. Logistic Regression 和 Linear Regression:
- Linear Regression: 输出一个标量 wx+b,这个值是连续值,所以可以用来处理回归问题。
- Logistic Regression:把上面的 wx+b 通过 sigmoid函数映射到(0,1)上,并划分一个阈值,大于阈值的分为一类,小于等于分为另一类,可以用来处理二分类问题。
- 更进一步:对于N分类问题,则是先得到N组w值不同的 wx+b,然后归一化,比如用 softmax函数,最后变成N个类上的概率,可以处理多分类问题。
2. Support Vector Regression 和 Support Vector Machine:
SVR:输出 wx+b,即某个样本点到分类面的距离,是连续值,所以是回归模型。
SVM:把这个距离用 sign(·) 函数作用,距离为正(在超平面一侧)的样本点是一类,为负的是另一类,所以是分类模型。
3. 神经网络用于 分类 和 回归:
用于回归:最后一层有m个神经元,每个神经元输出一个标量,m个神经元的输出可以看做向量 v,现全部连到一个神经元上,则这个神经元输出wv+b,是一个连续值,可以处理回归问题,跟上面 Linear Regression 思想一样。
用于N分类:现在这m个神经元最后连接到 N 个神经元,就有 N 组w值不同的 wv+b,同理可以归一化(比如用 softmax )变成
N个类上的概率。
拓展: 上面的例子其实都是从 prediction 的角度举例的,如果从training角度来看,分类模型和回归模型的目标函数不同,分类常见的是 log loss, hinge loss, 而回归是 square loss。
1.回归问题的应用场景
回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。另外,回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。回归是对真实值的一种逼近预测。
2.分类问题的应用场景
分类问题是用于将事物打上一个标签,通常结果为离散值。例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。最常见的分类方法是逻辑回归,或者叫逻辑分类。
3.如何选择模型
下面一幅图可以告诉实际应用中我们如何选择合适的模型。